maxon

SpaceLab

Robin Phillips

maxon motor

March 2024

Maxon is a family owned business, founded in Obwalden in 1961 and currently employing >3200 people world wide (~1200 in Switzerland).

Annual turnover is ~750million CHF from ~4.5 million actuators in 16,000 different variations per year.

Headquarters in Sachseln (Switzerland).

Gearboxes designed & manufactured in Germany.

Labor intensive subassemblies and high volume motor production in Hungary.

maxon product types:

- Motors
- Gearboxes
- Feedback devices
- Controllers

maxon

individual customer requirements

maxon Manufacturing Facilities

A global multinational company with production facilities around the world.

Why even go to Mars?

- Closest planet where humans might be able to live
- Same surface area as Earth
- CO₂ atmosphere (could extract oxygen)
- Geologically active
- Tolerable temperature range
- Relatively easy to get to (compared to outer planets)
- Presence of water

Evolution of Martian Exploration

1600's Telescopes

Image from a telescope with a 10 cm mirror

Earth Based Observations (1940's-1990's) Limited to basic large-scale geographic features

Mount Palomar - 4.5 meter mirror

Earth Based Observations (1990 -) Limited to basic large-scale geographic features

Hubble Space Telescope (HST) – 2.4 meter mirror

Evolution of Martian Exploration

First flyby in 1964

Evolution of Martian Exploration

Viking landers in 1976

Sojourner rover in 1997

The Advantages of Rovers

- Allows access to regions that landers cannot reach (example: hazardous terrain)
- Allow for larger areas of the surface to be explored
- Relatively cheap way of moving around
- Not as complex (technically risky) or mass limited as flying
- Proven technology 4 successful Mars missions
- Allows for multiple samples to be collected

Key Rover Technologies

Designed to get the scientific instruments to their targets.

- Communication links (radio)
 Reliable, known technology since 1960s
- Power (solar, nuclear or battery)
 - All proven to work on Mars since 1970s
- Camera systems (for navigation)
 Proven and reliable
- Long life drive motors
 - Very little prior experience (lunar rovers in 1970s)

Spirit & Opportunity

2003 - Each rover was equipped with 35 maxon DC motors

Opportunity lasted 15 years and 45 kilometers before succumbing to a lack of solar power in a dust storm.

Biggest science result: Clear evidence that Mars once had running water!

RE 20 & RE 25 (+MR enc)

Mars 2020 Perseverance & Ingenuity

6x DCX10 motors for the helicopter swashplates

9x EC32fl motors + detent brake for the sampling & caching and helicopter deployment mechanisms 1x EC20fl motor + GP22UP gearbox for sample handling arm end effector

maxon.

JPL Mars 2020 M24 actuator

Core features are shared with the catalog standard equivalent products:

Examples of modifications to "space-rate" actuators

Radial swaging between stator and flange to hold stator in place for EC20fl (industrial standard is just glued)

Radial swaging between planetarycarrier-sun-gear and cage to eliminate welds & adhesives

Vacuum bake-out of all parts for 144 hours

Differential expansion caused by:

- Variations in local temperature
- Materials expanding at different rates

Obwalden: -30°C to +40°C (+70°C in direct sunlight) Mars: -130°C to +20°C (+110°C inside motor)

Examples of modifications to "space-rate" actuators

Radial swaging between stator and flange to hold stator in place for EC20fl (industrial standard is just glued)

Radial swaging between planetarycarrier-sun-gear and cage to eliminate welds & adhesives

Vacuum bake-out of all parts for 144 hours

Bake-out to remove (reduce) volatiles from:

- Adhesives/Greases
- Manufacturing process contamination (oils)
- Production worker contamination (eg. fingerprints)

maxon

Cleanroom – Class 8

Examples of modifications to "space-rate" actuators

Radial swaging between stator and flange to hold stator in place for EC20fl (industrial standard is just glued)

Radial swaging between planetarycarrier-sun-gear and cage to eliminate welds & adhesives

Vacuum bake-out of all parts for 144 hours

- The classic example of metal fatigue proof that cracks spread!
- de Havilland Comet -> first passenger jet airliner
- Grounded after 3 crashes in one year

Environmental simulations to prove the design will survive the launch, travel to Mars, landing and operation.

Thermal Vacuum: down to 10⁻⁹mbar and -150°C

Shock and vibration: up to 4,000 g

Life testing with programmable duty cycles

Testing – 100% acceptance testing on all units

No-load and hall effect sensor test

No-load at various temperatures and start-up behavior at low temperatures

Cogging torque and torque generation characterization

Load testing

No-load, start-up sensitivity and load testing at various temperatures

Jezero Crater

First Successful Sample

Mars helicopter "Ingenuity"

Six Brushed DC motors (DCX10 S) as swashplate actuators

Helicopter Delivery System

Motors on Mars!

Status 2 Mar 2024

Perseverance 1078 Sol ~25km

Ingenuity 72 flights

Spectacular aerial views

Helicopter is now sent on "scouting" flights to assess route for rover or decide on science targets

maxon

